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ABSTRACT

As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic
(VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to
achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high
diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which com-
bines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute
apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal,
achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polariza-
tion. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a win-
dow blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary
(VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction
order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute
apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.
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1. INTRODUCTION

Diffraction grating for the 8.2m Subaru Telescope [1] and for the next generation huge telescopes of ground-based [2-4]
and space-borne [5] are required large angular dispersion and high diffraction efficiency. The physical image size of a
star at the focal plane of a ground-based telescope is typically determined by a seeing size. The size of a spectrograph
for the ground-based telescope without adaptive optics increases as a size of the telescope increases because a slit width
of the spectrograph is proportional to the seeing size, which is proportional to a diameter of the primary mirror of the
telescope. Although a space-borne telescope achieves a diffraction-limited imaging, the diameter of the telescope is in-
creased, and light-gathering power increases, astronomers desire a spectrograph with a higher and higher resolving pow-
er. Reduction in size and weight of the spectrograph by using a diffraction grating with high angular dispersion is re-
quired because restrictions of weight and volume of a scientific instrument for the space-borne telescope are very strict.

In the case of a spectrograph using a reflection grating with the Littrow mount (the configurations which the incident
and diffraction angles are equal, and shapes of incident and diffracted beams are identical), since a collimator and camera
(imaging optical element) of the spectrograph need to place a large distance from the diffraction grating, the diameters of
the collimator and the camera optics become large. On the other hand, a spectrometer using a transmission grating, di-
ameters of collimator and camera optics are able to be smaller than the spectrograph with the reflection grating because
the optical elements can place in the close vicinity of the diffraction grating. Moreover, the spectrometer using the
transmission grating achieves a long slit spectrum with a small curvature and reduces aberrations for a point image be-
cause the spectrograph is able to realize the perfect Littrow mount.

1.1 Surface relief grating

The conventional surface relief (SR) grating with sawtooth shaped ridges (Fig. 1) is commonly used as a transmission
grating for a low-dispersion spectrograph and as a grism (the direct diffraction grating). However, in the case of the
transmission grating, a diffraction efficiency of an SR grating at the first diffraction order decreases steeply at grating
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period with 4 times of the wavelength or smaller [6]. Moreover an SR grating of the transmission type is necessary to
increase a refractive index of a medium of grating ridges according as a diffraction angle (an angular dispersion) be-
comes large.
Equations of refractions at incident and exit surfaces of the SR transmission grating in Fig. 1 are given by
sin fy = n sin 6, (1-1)
and
n sin (0-60,)= sin 6, (1-2)

respectively. In the case of the Littrow mount, that is 8, = a+6,, the Eq. 1-2 is rewritten as
n sin (a-0;) = sin (a+6,)
n (sin a cos 6;- sin O, cos a) = sin a cos Gy + sin 6, cos a
(n cos 0, — cos By) sin a = (sin & + n sin ) cos a. (1-3)
Eq. 1-3 is transformed by substitution of Eq. 1-1 as

(n cos 0;— cos By) sin a = 2sin G, cos a.
As the result, the equation for the blazed angle « is given by

tana:%- (1-4)
(ncosB, —cosb,)

The Egs. 1-1, 1-2 and 1-4 apply to the grating ridges with the refractive index of 1.5, the incident and the diffraction an-
gles 6y must be smaller than 20° by the restriction of the critical angle for 8, which is smaller than 90°. As well as, in the
case of 6y = 45°, the refractive index of the grating ridges must be larger than 2.3. Clear materials with the refractive
index of 2.3 or more in the visible wavelength are limited such as ZnS, ZnSe, TiO, and diamond. Especially, no clear
material except diamond with the refractive index of 2.3 or more exists in the ultra violet wavelength.

1.2 Volume phase holographic grating

While a volume phase holographic (VPH) grating achieves very high diffraction efficiency up to 100% at the first dif-
fraction order for S or P polarization [6, 7]. In these reasons, a lot of VPH gratings and VPH grism have been installed
in numerous instruments for relatively high-dispersion spectroscopic observations [8-11]. However the VPH grating is
not able to achieve high efficiency for natural polarization and circular polarization according as a diffraction angle in-
creases because the properties of the diffraction efficiency are different between S and P polarization [12]. Moreover, a
wavelength bandwidth of a VPH grating is limited by a refractive index modulation of a recoding material using for the
VPH grating, which has the maximum of about 0.15 at present [7]. Furthermore, the VPH grating is not suitable for an
echelle spectrograph which several to hundreds of diffraction orders are folded onto a two dimensional detector by com-
bination of a grating of high diffraction orders with a cross disperser, such as a prism or a low-dispersion grating of the
first diffraction order, because diffraction efficiency of the VPH grating decreases as the diffraction order increases [13].
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Figure 1 Propagation of incident beam in surface relief grating Figure 2 Schematic representation of hybrid grism for MOIRCS.
with saw tooth ridges in the case of the Littrow mount [14].
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Figure 3 Fabrication process of transmission SR grating with acute angle ridges.

We introduce novel transmission gratings for instruments of the 8.2m Subaru Telescope, the Thirty Meter Telescope
(TMT) and the next generation huge telescopes about their expected performances based on simulations and about fabri-
cation methods in this paper [14, 15]. Those are the hybrid grism, the birefringence VPH (B-VPH) grating, the quasi-
Bragg (QB) grating, the volume binary (VB) grating and the reflector facet transmission (RFT) grating.

2. HYBRID GRISM

The middle dispersion grisms for the MOIRCS [16] of the Subaru Telescope are fabricated by directly ruling of saw-
tooth shaped ridges onto a hypotenuse of a KRS-5 (the mixed crystal of TaCl and TaBr) prism. However many cracks
like tiny mosaic are seen on the surfaces of the KRS-5 grisms. And the KRS-5 grisms seriously deteriorate efficiency
and width of line spectrum. These damages of the grisms are supposed to be caused by repetition of heat cycles between
a room temperature and cryogenic temperature when open and shut of the cryostat vessel of the MOIRCS. We have de-
cided the development of hybrid grisms for replacement of the KRS-5 grisms in this reason. The hybrid grism is con-
sisted by the combination of a ZnSe prism (n=2.46@1.65 pm) and replicated SR grating (n~1.5@1.65 pm) with ridges
of an acute apex angle.

The beam propagation in the hybrid grism as shown in Fig. 2 is expressed as follows. The equations for refraction at
the incident surface of the prism, the boundary between the prism and the glass substrate and the exit surface of a ridge
are given by

sin 8y = n;sin 6, 2-1)
nysin (a- 6,) = nysin 6, (2-2)

and
ny sin (f- 6,) = sin (8- 63), (2-3)

respectively. The Eq. 2-3 is transformed by the following procedure as

n, (sin S cos 6, - cos f sin 6,) = sin [ cos 63- cos £ sin 65,
n,sin@, —sin0,

tan B =
n,cosb, —cosb; (2-4)
The diffraction angle 8; is given by equation of diffraction as
mA = A (n, sin 8, - sin 65). (2-5)
mA

sin@, = n,sin@, -—
A (2-6)

When the diffraction beam is parallel to the incident beam, the blazed angle £ is obtained by substitution of 8; = a- 6,

and the Eq. 2-6 into the Eq. 2-4 as

tan = mhy
A{n2 cos b, —cos(a—@o)} 27
where /, is the direct vision wavelength. The apex angle y is given by
Y =90-$+6,, (2-8)

when 6, is parallel to the other facet of the exit surface of the sawtooth shaped ridge.

The hybrid grism for the MOIRCS has the grating period of about 10um and the apex angle of the sawtooth shaped
ridges of about 60°. Figure 3 shows a fabrication procedure of the transmission grating with an acute apex angle for the
hybrid grism. The master grating (die) for the hybrid grism is cut onto a surface of a work piece of the nickel-
phosphorus alloy, produced by the non-electrolytic plating on a metal substrate, by the shaper process with an ultra-high
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Figure 4 Diffraction image of liquid crystal (LC) gratings of the 1st order. Rows are the same grating, columns are observational
(Bragg) angles. Upper row: combination of TKN0100 (UV-curable LC, made by DIC) and MJ041609 (normal LC, made by Merck),
UV exposure: 12.4 mW, 180sec. Lower row: combination of ULC17A (UV-curable LC, made by DIC) and MJ041609, UV expo-
sure: 11.0 mW, 180sec.

precision machine and single crystal diamond bit of the same apex angle as the ridge apex angle. The transmission grat-
ing with the acute ridge angle is replicated from the master grating. When we had performed a test fabrication of the
master grating, we knew that the process is very sensitive to the thermal environment. The isothermal booth for the ul-
tra-high precision machine has improved for temperature stability, and we are performing the second test fabrication.

3. BIREFRINGENCE VPH GRATING

The B-VPH grating consists of an optically anisotropic medium such as a liquid crystal (LC) and optically isotropic me-
dium or consisted with two kinds of optically anisotropic media [17]. We carried out numerical calculations of the dif-
fraction efficiency of the B-VPH gratings by using our own software of the rigorous coupled-wave analysis (RCWA)
method [18, 19] that is improved for a diffraction grating with an optical anisotropic medium. We confirmed that the B-
VPH grating is able to achieve high diffraction efficiency up to 100 % (neglecting the surface Fresnel’s reflection loss-
es) at the first diffraction order with respect to natural polarization and circularly polarization because the characteristics
of the diffraction efficiencies of the B-VPH grating is able to coincide S and P polarizations.

B-VPH gratings which recording materials are combined three kinds of LCs of ultra-violet curable with a normal LC
were fabricated by a two beams interferometer with a He-Cd laser (315 nm) as an exposure optical system. The LC grat-
ings have the thickness of the LC layer of 1.3um and the grating period of 0.45um. As a result, all of the LC-VPH grat-
ings of combination are able to observe diffraction beams (Fig. 4). However the LC-VPH grating of the combination
with LCs of the same maker that is RMCO03 (UV-curable LC made by Merck) and MJ041609 (normal LC made by
Merck), has week diffraction efficiency. We are going to fabricate LC-VPH gratings with thickness of the LC layer of
10~20um and the grating period of 1.0pm.

4. QUASI-BRAGG GRATING AND VOLUME BINARY GRATING

The Wide Field Optical Spectrograph (WFOS) which is the first generation instrument of the Thirty Meter Telescope
(TMT) is planed to use the reflection gratings in the current design concept [20]. The conventional SR grating of the
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Figure 5 Schematic representation of quasi-Bragg grating. Figure 6 Schematic representation of volume binary grating [14].
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Figure 7 Diffraction efficiencies of QB gratings for the 6th to 20th diffraction orders. n;=1.0, n,=1.54, A =5 pm, t=9 pm, 6,= 45°.
Left panel: S polarization, rigtht panel: P polarization [14].

reflection type has advantages that the grating achieves comparatively high diffraction efficiency and a grating with a
large size is easily fabricated by a replication from a master grating. However a diameter of the camera of the WFOS
becomes very large because the Littrow configuration with a reflection grating needs a long distance between the camera
and the grating as mentioned in the section of the introduction.

In these reasons, we have evaluated the performance of novel transmission gratings for the WFOS. The transmission
gratings have the same incident and diffraction angles of 36~53°, the grating period of 2~5um, the diffraction orders of
5th~9th and 8th~13rd. However a conventional SR transmission grating and VPH grating are not available for the
WFOS gratings as mentioned in the subsection 1.1 and 1.2.

The QB grating [13] which has long rectangular mirrors aligned accurately in parallel like a window blind as shown in
Fig. 5 achieves high diffraction efficiencies in higher than the 4th diffraction order at the incident and diffraction angles
of 45° as shown in Fig. 7 (neglected surface Fresnel’s reflection losses). The dropping of diffraction efficiency of P po-
larization around the 8th and the 9th orders in Fig. 8 is supposed to be influence of the surface plasmon resonance. As
well as the VB grating [21, 22] as shown in Fig. 6 achieves high diffraction efficiencies [23] in higher than the 5th dif-
fraction orders at the incident and the diffraction angles of 45° by matching a line and space ratio to coincide S polariza-
tion with P polarization as shown in Fig. 8 (including the reflection loss by the incident surface). It is able to regard the
VB grating as a QB grating in this case because grooves of the VB grating function as total reflection mirrors. The
droppings of diffraction efficiency of S polarization below the 6th order and of P polarization below the 4th order in Fig.
9 are supposed to be influence of the evanescent wave coupling between a ridge and the next ridge beyond the groove.

And the reason of P polarization achieves higher efficiency than S polarization in Fig. 9 is suppose to be that the incident
angle is close to the Brewster angle.

4.1 Fabrications of quasi-Bragg grating

The first fabrication of the QB grating was done by stacking of 40 sheets of quartz mirror substrates. The mirror sub-
strate is a thickness of 0.2 mm, and chromium as a mirror is deposited on one side. The mirror substrates were laminated
by an optical adhesive mixed with glass beads of 10 pm in diameter. However, the QB grating did not function as a dif-
fraction grating in the visible wavelength because the glass beads have large variations in diameter [14, 15].
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Figure 8 Diffraction efficiencies of VB gratings for the 6th to 24th diffraction orders. n;=1.0, n,=1.54, A =5 pm, L&S =4.75:0.25
[um], t=9 um, 6y=45°. Left panel: S polarization, right panel: P polarization [14].
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Figure 9 Schematic representation of fabrication method of quasi-Bragg grating.

The subsequent fabrications of the QB grating of 20 sheets of quartz mirror substrates with a thickness of 0.5 mm and
with a uniform gold film deposited onto both sides were laminated by atoms fusion bonding at room temperature in air,
processed by the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University [24]. The QB grating has
very high accuracy as regarding the grating period, which is available for the visible wavelength, because a symmetrical
diffraction pattern was seen [14].

The third fabrications of the QB grating were lamination of 47 sheets of mirror substrates of quartz glass with a thick-
ness of 0.5 mm as shown in Fig. 9. The substrate has a chromium mirror deposited onto one surface, and the back sur-
face of the mirror substrate was embossed by wet etching itself, as maintaining thickness of the substrate as shown in left
panel of Fig. 9. The etching was processed by the Nanotechnology Platform facilities of the Toyota Technology Institute.
The mirror substrates were laminated by a UV-curable optical adhesive as shown in right panel of Fig. 9. Although the
QB grating did not show optimal condition of adhesion as it has partial periodic errors, the lattice spacing of the grating
achieves practical accuracy even in visible light [14].

4.2 Fabrications of Volume binary grating

To achieve a thick binary grating with a high aspect ratio, we are developing a fabrication method for the thick binary
grating by applying MEMS (Micro Electro Mechanical Systems) technology in the Nanotechnology Platform facilities.
We had fabricated volume binary gratings of a photoresist, which grating period is 5 pm, line and space ratio is 4:1 and
thickness of the grating is 10 um. However a uniform VB grating with a large area was hard to fabricate by this process.

We are planning to develop a high-dispersion echelle grism for MOIRCS which grating period is 5.1 um, line and space
ratio is 9:1, thickness of the grating is 16 um and Bragg angle in the vacuum is 28.4°. The master grating for the grism is
going to fabricate by the Bosch process as shown in Fig.10.

5. REFLECTOR FACET TRANSMISSION GRATING

The RFT grating is an SR grating with saw-tooth shaped ridges of an acute apex angle as shown in Fig. 11. The incident
beam from one side of a ridge of the RFT grating is reflected by another surface of the ridge, and the diffraction beam is
exited from the rear surface of the RFT grating. In order to increase a diffraction angle, a refractive index of the conven-
tional SR transmission grating has to increase because the beam in the SR grating is folded by refraction at the incident
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Figure 10 Schematic representation of fabrication method for VB grating.
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Figure 11 Schematic representation of beam bropagation in reflector facet transmission (RFT) grating (Left panel). Refraction and
reflection angles of beam in RFT grating when incident and exit angle of beam are 45° (Right panel).

and the exit interfaces, as mentioned in the subsection 1.1. On the other hand, the RFT grating is able to use a large dif-
fraction angle even with a small refractive index of the grating ridges because the beam is folded by reflection in the
RFT grating.

5.1 Basic equations for reflector facet transmission grating

The beam propagation in the RFT grating as shown in the left panel of Fig. 11 is expressed as follows. The equations
for an incident angle 6, and refraction angle 6, at the incident surface of the ridge are given by

01 = O(—H() (5- 1)
and
sind, = n sinb,, (5-2)

respectively. The relations in 6,, reflection angle 8; at the other surface of the ridge and the apex angle y of the ridge is
obtained by the sum of the interior angles of the triangle as

R+6,+R-0;+y = 2R,

0;= Oyty. (5-3)
As well as the relation in 63, the reflected beam angle 8, at the exit surface and the angle of the refraction surface f is
obtained by

03 +04+2R-ﬂ = ZR,

04 = ﬁ—93. (5-4)

The equation for refraction at the exit surface of the RFT grating is given by
n sinfy= sinb. (5-5)

When the reflected beam propagates parallel from an angle ¢ to the incident surface, the angle of the incident surface a is
obtained by

04 = R_a+¢9

a=R-04+¢. (5-6)

Eq. 5-3 is transformed by substitution of Eq. 5-4 and the sum of the interior angles of a triangle: y + a + f = 2R as
)= a+2f-04-2R. 5-7
The angle of reflector surface f is obtained by transformation of Eq. 5-7 as
L= (6,1t04-0)/2+R. (5-8)

Note that the RFT grating does not achieve its essential performance if a beam enters from back surface of the ridges
because a part of the beam is folded to irregular direction by the ridges.
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Figure 12 Diffraction efficiencies of RFT gratings for the 6th to 24th diffraction orders. ny=1.0, n;=1.54, A =5 um, t =9 pm, fg=

45°. Left panel: S polarization, right panel: P polarization.

5.2 Example of caluclation of RFT grating

The inverse ray tracing of the RFT grating is expressed as follows, when a incident and exit angle of beam for a RFT

grating are 45°, the refractive index of ridges of the RFT grating is 1.54 as shown in the right panel of Fig. 11. The angle
of 8, is obtained by substitution of &, =45° and n =1.54 in Eq. 5-5 as

6. —sin”! sin45°
! 1.54

=27.33°.

When the diffraction angle in the vacuum is 45°+2.5°, the angle ¢ is obtained by

$=sin” sin(45°+2.5°) p
=sin" {—— Lt~

1.54 ¢
=1.27°.

The angle of incident surface « is obtained by substitution of the values of 8, and ¢ in Eq. 5-6 as
a=90°-27.33+1.27°
= 63.94°.
The angle of reflector surface f is obtained by substitution of a, 8y, n and 6, in Eq. 5-8 as

P [sin" {sin(63.94°—45°)
2

+27.33°-63.94° [+ 90°
1.54

=77.78°.
The angles y, 65, 6, and 6, are obtaind by the sum of the interior angles of the triangle, Eqs 5-4, 5-3 and 5-2 as
y=2R-a — f=180°-63.94°-77.78°
= 38.28°.
03=[-0,=77.78°-27.33°
=50.45°,
0, = 6;-y =50.45°-38.28°

=12.17°
and

6, = sin”(n siné») = sin”'(1.54 x sin 12.17°)
= 18.94°,
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respectively. The angle 6, is also obtaind by Eq. 5-1 as
0= a-0y = 63.94°- 45°
=18.94°.

We are planning to fabricate a master grating of a RFT grating by using the same method as the fabrication process of
the hybrid grism (Fig. 3).

6. CONCLUSIONS

In this paper, we introduced innovative diffraction gratings. The hybrid grism is consisted by combination of a ZnSe
prism and replicated surface-relief grating with ridges of an acute apex angle. The B-VPH grating is able to achieve
high diffraction efficiency of up to 100% for the natural polarization and the circular polarization at the first diffraction
order. The QB grating and the VB grating achieve comparative high diffraction efficiency in high diffraction orders.
The RFT grating is able to use for a large diffraction angle. The RFT grating achieves high diffraction efficiency of up
to 80% in high diffraction orders. These types of diffraction gratings are useful for new instruments on both the exist-
ing 8m class of telescopes, as well as the upcoming 30m class and the space-borne telescopes, due to their ability to
produce high spectral dispersion from a relatively small pupil, thereby making the whole instrument smaller, more
practical, and less expensive.
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As a transmission grating, a surface-relief (SR) grating with sawtooth shape grooves and volume
phase holographic (VPH) grating are widely used for instruments of astronomical observations.
However the SR grating and the VPH grating are difficult to achieve high diffraction efficiency at
high angular dispersion. We propose two novel gratings that solve this problem. One is the
birefringence VPH grating, which contains anisotropic media such as liquid crystals. The other is
the quasi-Bragg (QB) grating, which consists long rectangle thin metallic films or low refractive
index layers aligned in parallel precisely such as a window shade. We also introduce the hybrid
grism, which combines a high refractive index prism and replicated transmission grating with

sawtooth shape grooves of acute angle.
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Fig.1 Schematic representation of hybrid grism for
MOIRCS.
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Fig.2 Fabrication process of transmission SR grating
with acute angle grooves.
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3. Birefringence VPH grating
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Fig. 3 Diffraction image of liquid crystal gratings
with the 1st order. Rows are the same grating,
columns are different observation (Bragg) angles.
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Fig.4 Schematic representation of quasi-Bragg
grating.
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4. Quasi-Bragg grating
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Fig. 5 Diffraction efficiencies of QB gratings for the
6th to 20th diffraction orders. ny=1.0, n;=1.54, A
=5 pum, t =9 um, fg = 45°. Upper panel: S
polarization, Lower panel: P polarization'”.

VPH grating |33 5 < 72 % & BRI RANMET
LTLEI, —FH. @mEFRDOT Y X LITHEBE
TEAR D [RIHT#E F & AT DG IR R I I W O/ &K
<ML F5Z LITR#ETH S,

Fig. 4 @ X 5 IZE MR O &EIEH 2V ITKR)E
WERENEFRT 74 RO X HITHE L FE
TIZHLH & M7= Quasi-Bragg (QB) grating'™ 2 (%
FREPT BN TEWEIFT IR Z ER TE D
Z LS RCWA IEDHEMHTIC X - THERB S T
W% (Fig.s) '*'7,

ALK RER2 T 0T 0 THEATICE
WTC, MR S N E R DO 2 HEFE S Wi
JE & 0.5mm D5 T — R 20 Koz WiRE A A
Dz L Vg LT QB grating A E L7, £,
AT EER AR EZ =y F 7 L TR S L HEFr
LImAN—YZER LI ERERET S L
XoT, BEMORBEENE QB grating % %
BT HEEFER L, Fig. 6 DL D17 1 LR
ANy ZY T EINEIT—HORERIZIT v F
YR RA (A=) 2R LT
0.5mm D A7 X T —HAR 47 B & SRS R LR B
EHEHNC XV FEE LT, QB grating 3 1EL 7=,

ZH?D QB grating & LAATNICHAE L7227 = A
MANRY BV T INTZIT—HRETTAE
— AR SN HEHKITHRIE L 72 QB gratin @
FHfpEBRE LT A, T AE—ANRRA
SNT-HERITREE L7 QB gratin (X, 7 A€
%x@ﬁ DIXBDEDIOHIZ, Fig. 7D LD

WA B W TR & L Ciéae
ﬁm:kﬁbﬂotoéﬁ\ﬁﬁﬁéﬁmib
Tl &7 QB grating 1% Fig. 7 OHED X 9T
AEIEIZ B DT TR W TR E Th 5
ZEW ot i, R AR AR L
72 QB grating | i%%@*ﬁ:biﬂiﬁf X722 ho i
728, Fig. 7 O FED X 51T I B HIRA 2

Mask
_Photoresist
-Metal film

~ Silica glass
3 v Metal film (Mirror)
Photoresist (Mirror
protection film)

UV exporsure

Etching of metal film

Etching of silica glass

/m

Finish _g10-200m 05~1
%l i

Remmdl of
photoresist

5~10um

_—

Fig.6 Fabrication process of mirror substrate with
emboss for QB grating.



Fig. 7 Diffracted beam images of QB gratings,

Quasi-Bragg angle: 45°. QB grating on the top
panel shows that silica glass substrates of 0.2mm in
thickness deposited with a chromium film on one
side are laminated by adhesive mixed with glass
beads of 10 um in diameter. QB grating on the
middle panels shows that silica glass substrates of
0.5 mm in thickness deposited with gold film on both
sides are laminated by fusion of gold at room
temperature’”. QB grating on the bottom panels
shows that silica glass substrates of 0.5 mm in

thickness with emboss laminated by adhesive!?.
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